
Temporal Difference Learning in the Game of Othello
CS701 Final Project Report

Will Ernst
Middlebury College

Middlebury, VT
wernst@middlebury.edu

Ghassan Gedeon Achi
Middlebury College

Middlebury, VT
ggedeonachi@middlebury.edu

ABSTRACT
This paper explores the implementation of the temporal-difference
learning algorithm TD(λ) to train an Artificial Intelligence
agent to play the board game ‘Othello’. The training strate-
gies compared are: learning from self-play, learning against
a fixed opponent, and learning against a random opponent.
These training strategies are used on two player types, a con-
stant semi-random player and a decreasingly semi-random
player. The players are trained using a multi-layer percep-
tron neural network, which is updated using the TD(λ) al-
gorithm. Our results show that the algorithm trains the net-
work best with self play and an added stochastic element,
and that for our basic network setup, λ = 1 yields the best
results. A network trained in this way was able to decisively
beat an Alpha-Beta Search Algorithm. We conclude that our
implementation works decently to train an Othello player,
but increased training iterations and improved training meth-
ods would likely yield better success.

Keywords
CS701; TD(λ); Othello; Reinforcement Learning; Temporal
Difference Learning; Neural Networks

1. INTRODUCTION
This paper adapts Gerald Tesauro’s implementation of the

TD(λ) algorithm on the game of backgammon to the game
of ‘Othello’ (also known as ‘Reversi’). The game is played
on an 8x8 board and works by having ‘Black’ and ‘White’
players take turns placing pieces on the board. The initial
board configuration has 4 pieces, 2 for each player, placed
in the center of the board in a diagonal configuration [Fig-
ure (1)]. In Othello, Black goes first; all subsequent moves
by the players must flank one or more of the opponent’s
pieces−meaning that you must place your piece such that it
surrounds one or more of the opponent pieces either verti-
cally, horizontally or diagonally. Flanked pieces are captured
and are replaced with pieces of your own color. The game
goes on until neither player has any valid moves. Once the
game has ended the player with the most pieces wins. The
project was motivated by our interest in getting some expe-
rience with the emerging field of machine learning, as well
as our interest in developing an agent capable of strong play
while being trained completely independently.

In order to build an Othello player, we need a way to eval-
uate the states of the game (configurations of the board).
Because the game tree size for 8x8 Othello is estimated at
1054, a look up table or similar approach is not practical.

Figure 1: Initial board state for Othello, where x’s are valid
moves for Black

Instead, we use a neural network to evaluate states. We use
a Neural Network with 1 input layer, 1 hidden layer and
1 output layer. The input of our network is a vectorized
representation of the board state and the output of the net-
work is its associated evaluation. To calculate the output of
a given board state, the input is fed through the network.
The easiest way to visualize this process is to think of the
neurons as a node. Each of the input neurons is connected
to every one of the neurons in the hidden layer, and each of
the hidden neurons are connected to the output layer [Figure
(2)]. Each connection has a corresponding weight, and the
output of each neuron is equal to the sum of all the inputs
multiplied by their weight. To normalize and smooth out
these connections, we use a sigmoid function. This returns
an output between 0 and 1 for all neurons in our Network.
Once a board state has been fed through the network, we
can evaluate its strength based on the final output of the
network. The final output of the network can be interpreted
as the probability of Black winning from that state. Given
this interpretation, Black will choose a move that maximizes
this output, and White will choose a move that minimizes

this output.

Figure 2: A simplistic representation of a Neural Network
with 1 hidden layer and 1 output layer

At each time step−after every move−the network calcu-
lates the error associated with the given move and back-
propagates this error through the network. Back-propagation
is the process of updating the weights of the connections to
correct for the error. The goal of the back-propogation pro-
cedure is to update the weights in a way that this error is
minimized. Finally, at the end of each game a pre-defined
reward is given for a win, loss, or tie. The values of these
final rewards are what defines the interpretation of the net-
work output. Further details on how this back-propagation
works will be discussed in our Methods section.

Othello is a deterministic game, in that it contains no
stochastic elements, such as a dice roll. In training though,
the addition of a stochastic element can be helpful to explore
unseen board states. As such, we use a stochastic element in
our training iterations. We call this element the exploration
rate (ε), and determines how often the player will choose a
random move during training, as opposed to choosing the
optimal move determined by the Network.

In this project, we have devised two types of networks
trained with distinct implementations of the exploration rate.
The first of these networks, which we named NN-Fixed, has
a fixed exploration rate. The second of these Networks,
this one called NN-Decreasing, has an exponentially decreas-
ing exploration rate. The analysis of these two-distinct im-
plementation is our project’s main contribution, and sheds
some light on the optimal implementation of temporal dif-
ference learning in a deterministic environment.

Our second contribution is seeing how each of these net-
works perform with different Lambda (λ) values. The λ
value determines the rate of decay in error correction for
previous time steps. After some testing, we found that
high lambda values yielded the best results, so we chose
to test the extreme case λ = 1.0 vs a slightly less drastic
case λ = 0.9.

Our third contribution is seeing how the network learns
versus various opponents. For this purpose, we created 3 ad-
ditional opponents against which our networks train against.
These opponents are: (1) a fully Random agent whose moves
are selected randomly, (2) a Positional Value opponent, where
tiles have a hardcoded value based on how good or bad they
are in traditional play [7], (3) an AI agent using the Alpha-
Beta search. In our training experiments, both NN-Fixed
and NN-Decreasing are trained against opponents (1) and
(2), as well as against themselves, using λ = 1.0 and λ = 0.9
. An analysis of these contributions will be covered in our
Results section where we evaluate the performance of the

various combination of Network types, lambda values and
opponent type. All networks are trained for 125, 000 games,
and their performance against a random agent for 500 games
is used as a measure of strength. Additionally, we use the
score of the networks against (2) Positional-Value agent and
(3) Alpha-Beta agent as a gauge of performance over time.

Our final contribution is an implementation of a user-
friendly GUI interface for the Game, where the user can
choose to play against any of our trained Neural Network,
or any of the other agents that we created. As of now the
selection of opponent is code based, but in the future we
are hoping to create a full fledged web application where
the user can select the opponent of choice from a drop down
menu.

2. RELATED WORK

2.1 TD-Gammon
The work of this paper was motivated by Gerald Tesauro’s

TD-Gammon [6]. TD-Gammon, developed in 1992, is a
backgammon program that uses an artificial neural network
trained by the TD(λ) algorithm. The program was a ma-
jor success at the time, and led to new developments in
backgammon strategy and theory.

The program used a standard multilayer perceptron net-
work as a function approximator for the probability of the
black player winning at a certain state. The network uses
the the TD(λ) back-propagation algorithm to update its
weights. The goal of the weight updates, as it is with most
temporal difference learning algorithms, is to minimize the
temporal-difference error. This error is the difference of the
neural network output in time t+ 1 and the neural network
output in time t.

The TD gammon program runs as follows: at each timestep
the program calculates each possible move using a one ply
look ahead (this means that it only looks one move ahead
of its current state). Those moves are vectorized into neural
network inputs and are fed into the network. The feed-
forward output of the network is a vector of four outputs
corresponding to the four possible outcomes of either White
or Black winning either a normal win or a gammon. Due to
extreme rarity, triple gammon end games were not included.
The best value for the player is chosen and the weights are
updated using TD(λ). When a game is over, instead of cal-
culating a new move, the board state is assigned a vector
(for the four endgame possibilities) with a 1 assigned to the
observed endgame state and 0s assigned to the rest.

During training, the neural network itself is used to se-
lect moves for both sides. With this training paradigm, the
program only learns from what its own moves are. This
paradigm is used throughout the entire training, even at
the beginning when the weights of the network are random.
Although at the beginning the network has no sensible strat-
egy, it is improved through self play as it observes successful
sequences of moves. The results of TD-Gammon were im-
pressive. Although the initial state of the program had no
knowledge of the game, it was able to develop basic strate-
gies for the game early on, such as hitting the opponent,
playing safe, and building new points. This was observed
after just a few thousand games. After several tens of thou-
sands of training games, more sophisticated strategies were
observed. In examination of the weights from the input
to hidden layer, the network revealed interesting spatially

organized patterns of positive and negative weights, corre-
sponding to useful features of the game. This implies that
TD-Gammon was capable of automatic “feature discovery”,
which is one of the original goals of game learning research.

To evaluate the success of the program, it was tested
against world-class human opponents. The first iteration
of the program, version 1.0, achieved respectable results
against Bill Robertie, Paul Magriel, and Malcolm Davis,
(ranked 11th in the world at the time), with a net loss of
13 points and an average loss rate of about 1 quarter point
per game. Version 2.0 of the program added more training
iterations and a 2-ply look ahead. Playing Kent Goulding,
Kit Woolsey, Wilcox Snellings, former World Cup Champion
Joe Sylvester, and former World Champion Joe Russell, the
program had a net loss of only 7 points. Version 2.1 of the
program achieved near parity to Robertie, who only man-
aged to beat the program in the last game resulting in a
narrow 1-point victory.

2.2 Othello research
Previous research has been done on using reinforcement

learning (RL) algorithms to solve the game Othello. Work
by Ree et al. explores Othello with three learning strate-
gies: Learning by self-play, learning from playing against a
fixed opponent, and learning from playing against a fixed
opponent while learning from the opponent’s moves as well.
Their work examines three commonly used RL algorithms:
Q-learning, Sarsa, and TD-learning. Results from their test-
ing show that each algorithm has its own optimal train-
ing strategy. Q-learning and Sarsa performed best when
trained along with a fixed opponent, while TD-learning per-
formed best when trained through self-play. Additionally
they found that learning from the opponent’s as well as the
player’s own moves moves generally performed worse than
just learning from the player’s own moves [7].

3. METHODS

3.1 Network Layers
To implement the TD(λ) algorithm we use a neural net-

work with an input layer with 64 neurons, one hidden layer
with 50 neurons, and an output layer with single neuron.
The output neuron is used to evaluate the board state and
can be interpreted as the probability that Black wins from
that state.

Since neural networks require vector inputs, we convert
the 8x8 board state into a vector of size 64 with value of 0,
1 and −1, which respectively correspond to an empty tile,
tile containing a Black piece and a tile containing a White
piece.

The hidden layer is comprised of 50 neurons. This choice
comes from testing various implementations of the network,
and picking the network that showed strong learning perfor-
mance while remaining not too computationally demanding.
Since each additional hidden neuron adds 65 connections−64
to the input layer and 1 to the output layer−the computa-
tional cost of adding one or more is rather steep.

3.2 Sigmoid Neurons
Perceptrons were developed in the 1950’s and 1960’s by a

scientist named Frank Rosenblatt, who was inspired by the
earlier work of Warren McCulloch and Walter Pitts. These
are the most basic type of neurons that can be used in a

Figure 3: Visual representation of a neuron in a Neural Net-
work

neural network. Perceptrons take inputs with correspond-
ing weights, and output a value of 0 or 1. The output is
normalized based on a threshold. If if the weighted sum of
the inputs is less than the threshold, then the output is 0,
and the output is 1 otherwise [Figure (3), Equation (1)][1].

output =

{
0, if

∑
j wjxj ≤ Threshold

1, if
∑

j wjxj > Threshold
(1)

output =
1

1 + e−z
(2)

The issue with perceptrons is that small changes in the
weights can cause major changes in the output of the neu-
ron, as such perceptron networks for complicated task can
be very hard to train. With that in mind, we chose to use
sigmoid neurons for our implementation of the networks.
Visually these look the same as perceptrons [Figure(3)], but
the output of the neuron is passed into a sigmoid function
[Equation (2)], where z is the sum of the weights multiplied
by the input of the neuron. This returns a value between 0
and 1. A graphical representation of the outputs of percep-
tron vs sigmoid neurons can be seen in [Figure (4)].

(a) Percetron output value (b) Sigmoid output value

Figure 4: Different between Perceptron and Sigmoid output

3.3 TD(λ) Algorithm
The TD(λ) algorithm was designed by Richard Sutton in

1988. Most prediction learning methods at the time assigned
credit by means of the difference between a predicted and
actual value. Sutton’s method, on the other hand, assigned
credit by means of the difference between temporally suc-
cessive predictions [2]. The network weights are updated
according to the following rule [3]:

wt+1
ij = wt

ij + α(P t+1 − P t)etij (3)

where:

wt
ij is the weight at time t from node i to j

α is the learning rate parameter

O is the ‘Set’ of outputs given by the output layer

P t
k is output value of the output node k at time t

etij is the eligibilty trace matrix at time t

The weights are updated through this method in every
turn of the game. The TD error is calculated as [3]:

(P t+1 − P t) (4)

The goal of the program is to minimize this error. If it
does so, then the algorithm will have found a sequence of
moves that perfectly predicts the outcome of the game. The
learning rate, α, is a weight parameter for the error to deter-
mine how much the total error will affect the weight change.
The eligibility matrix is used in the algorithm to determine
which weights are ’eligible’ to be updated. When TD error
occurs and learning needs to be done, only eligible states are
assigned credit for the error. This matrix keeps a running
memory of every credit assignment that has occurred in the
training. The matrix is calculated as follows [3]:

etij =

t∑
n=1

λt−n ∂P
n

∂wn
ij

(5)

where:

λ is the decay parameter for the eligibility matrix

The eligibility matrix is running sum of the previous credit
assignments in the network [4]. Previous assignments are
decremented at each timestep by the value lambda, so that
credit assignments early in training have less of an effect on
current credit assignments. The credit assignment is based
on a matrix of partial derivatives of the network output with
respect to each weight. This determines how much each
weight affects the output of the network, and thus how much
credit it should get for the error. These partial derivatives
are calculated as follows [3]:

∂P t

∂wt
ij

= δt+1
j yt+1

i (6)

δti =
∂P t

∂sti
=


yti(1− yti), if i ∈ O∑

j ∈ FOi
∂P t

∂stj

∂stj
∂yt

i

∂yt
i

∂sti

=
∑

j ∈ FOiδ
t
jw

t
ijy

t
i(1− yti) otherwise

(7)

where:

δti is the error at node i

yti is the output of node i at time t (where i is in the
layer before j)

From these equations, we can see that the final change for
each weight is the a weighted (by α) temporal difference
error again weighted by how much credit that weight has
in the final outcome. The inclusion of a lambda value is
considered a bridge between one step TD and Monte Carlo

methods [4]. For λ = 0, only the current credit assignment
is factored into the weight update, while for λ = 1, all previ-
ous credit assignments are equally factored into the weight
update. Setting λ to a value between 0 and 1 gives the
result algorithm a mix of both approaches.

Learning and Training: To teach the network, multiple
games are played. For the results presented in this paper,
the network was trained with 125, 000 games. Each epoch
of training runs as follows:

1. While (iterations < totaliterations)

2. If black move:

3. Move and learn

4. If white move:

5. Move and learn

Note that with each game, the eligibility matrix is reset,
but the weights of the network are not. This is because
the eligibility matrix is supposed to keep track of previous
moves in the game. For all games, the move in one game
is independent of the moves of another, so we do not want
to eligibility matrix remembering from past games. In this
implementation of TD(λ), while playing a game each move
represents a time t. At each move the program executes the
following:

1. Observes the current state st

2. If st is endgame:

3. Set st+1 = 0 if white wins, st+1 = 0.5 if tie,
st+1 = 1 if black wins

4. Else:

5. Given st, the program calculates A
the possible afterstates of st

6. For each a in A:

7. Vectorize a into an input for NN

8. The NN calculates the output of the of a

9. Set a to st+1 if it has the greatest output value

10. Vectorize st

11. Place a piece on the board in the
position corresponding with state st+1

12. Given st and st+1, run TD(λ) to adjust the weights

In order to understand the output of the neural network,
specific rewards should be passed at the end of the game.
These rewards are 1 if Black wins, 0 if White wins, and 0.5
if there is a tie. These values are chosen because at a state
when Black wins, Black has a 100% chance of winning. The
same can be seen for the other values. The error based on
these rewards is passed through to the previous moves made
by the player in through the eligibility matrix. Thus, these
moves get credit for reaching the reward given at the end of
the game.

3.4 Player Types
NN – This player is the standard neural network player.

It decides its moves based on the neural network output. We
found that this player did not train the network well during
self play. In training, this player does a poor job at exploring
a wide variety of different states. This is because Othello

lacks a stochastic element. So, when a network trained by
this player was given a state that it had not seen before,
it performed poorly. This is the player used for testing the
neural network.

NN-Fixed – This player decides its moves randomly a pre-
set percentage of the time and moves based on the neural
network otherwise. The benefit of this player in training is
that it has a stochastic element that the Neural Network
player does not. To implement this, at each move a random
number between 0 and 1 is selected. If the random number
is above some threshold, then the player moves based on
the neural network and moves randomly otherwise. We call
this threshold the exploration rate (ε). This player is mainly
used in training, and shows better training results than the
Neural Network player.

NN-Decreasing – This player decides its moves randomly
a decreasing percentage of the time and moves based on the
neural network otherwise. This player has similar benefits
to the Semi Random Neural Network player, but reinforces
more of its moves in later iterations of training. ε is calcu-
lated by an exponential function:

ε = −(1− a) ∗ e
10(i−n)

i + a (8)

Where:

a is the initial exploration rate

i is the current iteration

n is the total number of iterations

At the point when i = n, the threshold is 1 and chooses
only from the neural network.

Figure 5: Graphical Representation of the exponentially de-
creasing learning rate with a = 0.5 , n = 125,000

Random – This player decides all its moves randomly.
This player is mainly used in testing. Because Othello has
no stochastic element, it is difficult to test a trained neu-
ral network against non-stochastic players. In these cases
of testing, the same game is played every time. With this
player, a different game is played in each round of testing
so a more accurate win percentage for the network can be
calculated.

Position Values – This is a fixed player with a heuris-
tic value assigned to each of the 64 board tiles. It makes
its moves based on the maximum tile value of the possible
moves. This player is mainly used in testing.

Greedy – This player makes its moves in order to maximize
its score. It uses a one ply look ahead to determine which
move is best. This player is mainly used in testing.

Alpha-Beta – This player implements the alpha-beta prun-
ing algorithm to its best possible move. The alpha-beta

pruning algorithm is a tree search algorithm that minimizes
the number of nodes visited in a minimax tree. It is able to
forecast possible board states for k timesteps in the future.
It selects the move that maximizes its score at statet+k, as-
suming that the other player also moves to maximize its
score. This player is mainly used in testing.

• The Source Code for our project can be found at the
following link https://github.com/wernst/td-othello

• The Repository also contains a Subset of the Net-
works we saved during training, a text file containing
the <Iterations><Win$Percentages> during train-
ing for the respective networks, and finally vectorized
version of the graphs found in the Results Sections.

4. RESULTS AND DISCUSSION
In the following section we analyze (1) the learning perfor-

mance of the implementation of a exponentially decreasing
exploration rate (ε starting at 0.5) as opposed to a fixed ex-
ploration rate (ε = 0.5), (2) the effect of setting λ = 0.9
vs. setting λ = 1.0 and (3) how our Self-trained Neural
Networks performed against our strongest competing Agents
Alpha-Beta and Positional-Value. Finally, (4) we will briefly
cover GUI applet that we have developed for users to have
a convenient interface which they can use to play against
the agent of their choice. Our best implementations reached
performances against a random agent of around 90%.

4.1 NN Dec vs NN Fixed
Looking at Figure (6) and Figure (7), we see very similar

patterns in learning for the two different types of network.
Given the implementation of the exponential exploration de-
cay, we were expecting the networks to behave very similarly
until we reach game 80, 000, at which time the exploration
rate would start decreasing. We had initially hypothesized
that when this happened NN-Decreasing would start refin-
ing its weights to discover subtler patterns in play style that
NN-Fixed would be unable to find. This, however did not
happen. In both models, and against all opponents, we saw
very similar win percentages. There is one small difference
in the models that is quite interesting, but somewhat hard
to spot. If we carefully look at the difference in win per-
centages between Figure (6b) and Figure (7b), specifically
for the red line representing self-play, we notice that the line
in Figure (7b) is much smoother than Figure (6b) and this
starts right around the 80, 000 games. This is likely due
to the exploration going down and the Network converging
towards its final (and ideally optimal) weight configuration.
Overall the decreasing exploration rate does not seem to pro-
vide too much of a benefit, however if a modified form of this
decaying exploration rate were implemented right after the
network reaches its maximum win percentage, it could pre-
vent the network from experiencing the sharp dips that can
be seen throughout the training. This theorized adaptive
exploration rate ε is one possible avenue for future research.

4.2 Lambda Value Choice
During the course of training, both Networks−NN-Decreasing

and NN-Fixed − with λ = 0.9 performances suffered right
around reaching the 50, 000 iteration mark [Figure (6), Fig-
ure (7)]. This decrease in performance seems to happen
right after the network reaches optimal performance, but

our Networks with λ = 1.0 didn’t seem to suffer from the
same issue. During the period of decline, the values out-
putted by the networks with λ = 0.9 approached 1. By the
end of training, the evaluation of almost every board state
would output a value > 0.99. Although we are unsure of
exactly why this occurs, we did notice that this pattern oc-
curred earlier with larger α values. Although the goal of the
TD(λ) algorithm is to converge to the global minimum of
the function approximator, this convergence has only been
proven for linear networks and linearly independent sets. In
the general case, there is no guarantee that the algorithm
will converge even to a local minimum [5]. This finding
seems to suggest that for our implementation of the Neural
Network a λ = 1.0 is optimal, but more research would have
to be done to fully conclude this.

4.3 Opponent Types
Having established that the λ = 0.9 causes a detrimental

form of convergences in our network, let us now turn our at-
tention back to Figures (6b) and Figure (7b) to examine the
way that the various opponents it trained against affected
the Learning Rate.

Positional-Value − Immediately it becomes clear that the
network struggles to learn when playing against Positional
Value. We had expected that the network would have a hard
time beating the agent in the early stages of the game. But
we also expected the network (especially NN-Decreasing) to
eventually find a weight combination that would allow it to
defeat the Positional-Value agent and start learning from
playing against it. However, we notice that the performance
against Random, stagnates around or even below the 50%.
When we examined the output, we noticed that Positional-
Value was winning a significant percentage of the games,
which means that neither of our NN were receiving any re-
ward and as such the network was unable to optimize its
weight to find a combination that worked best.

Random −We were rather surprised at how well our net-
work learned from a fully random opponent. We had not
expected that our Neural Networks would learn almost as
well against a fully random opponent, as it would against it-
self. This seems to confirm that high exploration rate allow
for quicker learning. It should be noted that in the latter
stages of training, the Networks training against a random
opponent experienced more spikes and dips in learning that
those learning from self-play. Additionally, these results may
be biased as the testing benchmark is against Random. In
these networks’ performance against stronger players the re-
sults were not impressive.

Self-Play − as we had expected this showed the best re-
sults, reaching a win percentage against Random of around
90%. Since this model seemed worked best, we decided
to conduct further experiments and displayed our Networks
score vs. both the Positional-Value agent, and Alpha-Beta
with a max depth of 4 at various intervals in our training,
see [Figure (8)] and [Figure (9)]. In Othello the score can
quickly switch since a single move can cause a significant
of the board to switch colors. As such, scores are not al-
ways the best indicator of learning, but we were curious to
see if we noticed any patterns in the data. In general, be-
ing above the 32-point threshold-indicated by the blue line
should indicate a win (however there are rare exceptions).
Unfortunately, no subtle pattern emerged, but on a general
case, we noticed that our data-points were generally above

(a) NN-Fixed with Lambda 0.9 (b) NN-Fixed with Lambda 0.9

Figure 6: Graphs for Neural Network with Fixed Explo-
ration Rate

(a) NN-Decreasing with Lambda
0.9

(b) NN-Decreasing with Lambda 0.9

Figure 7: Graphs for Neural Network with Decreasing Ex-
ploration Rate

the 32-point threshold against Alpha Beta, implying it was
able to defeat the Alpha Beta player consistently. We theo-
rize that our models moves are much superior to Alpha-Beta
in the early games, since Alpha-Beta has the advantage of
looking 4 moves ahead during the end game.

Against Positional-Value [Figure (9)], the results were
quite poor, and this seems to further reinforce what seemed
to be true in training, which is that Positional-Value is a
very strong opponent.

4.4 GUI implementation
The final contribution of this paper is a user-friendly envi-

ronment in which the player can play against an agent of his
choice. The Layout of the applet can be seen in Figure (10).
We hope to be able to get the applet online soon. Once this
happens, the applet’s url will be linked from the following
addresses:

• http://www.cs.middlebury.edu/ wernst

• http://www.cs.middlebury.edu/ ggedeonachi

Figure 10: Graphical User Interface for Othello

5. CONCLUSION
In this project we compare two λ values (0.9 and 1.0)

in their ability to train an Othello player using the TD(λ)
algorithm. We found that both values worked best training
with self-play. Using self play as the training paradigm,
λ = 1 worked best for our TD(λ) implementation on training
an Othello player. This version of the algorithm is most
similar to Monte Carlo methods [4] .

For future work with respect to our implementation, we
would like to continue to explore combinations of α values, λ
values, network setups, and randomness to determine which
results in the best training inputs. Using more advanced

(a) NN with Lambda 0.9 vs.
Alpha-Beta

(b) NN with Lambda 1.0 vs. Alpha-
Beta

Figure 8: Score of Self-Trained Neural Networks vs. Alpha-
Beta

(a) NN with Lambda 0.9 vs.
Positional-Value

(b) NN with Lambda 1.0 vs. Positional-
Value

Figure 9: Score of Self-Trained Neural Networks vs.
Positional-Value

network techniques, such as changing of α values and λ val-
ues through the training process is another possibility. We
also would like to determine what caused our network dur-
ing training to inflate all its outputs toward 1, when λ < 1.
In general, we feel that this method of learning could be
expanded to number of board games.

6. ACKNOWLEDGMENTS
The authors would like to thank Professor Daniel Scharstein

and Professor Ananya Christman for providing assistance on
this project. Additionally, the authors would like to thank
Professor Jeff Dunham for allowing access to his computa-
tional resources.

7. REFERENCES
[1] F. Rosenblatt. The perceptron: a probabilistic model

for information storage and organization in the brain.
Psychological review, 65(6):386, 1958.

[2] R. S. Sutton. Learning to predict by the methods of
temporal differences. Machine learning, 3(1):9–44, 1988.

[3] R. S. Sutton. Implementation details of the td ()
procedure for the case of vector predictions and
backpropagation. GTE Lab., Waltham, MA, Tech. Rep.
TN87-509.1, 1989.

[4] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge, 1998.

[5] G. Tesauro. Practical issues in temporal difference
learning. In Reinforcement Learning, pages 33–53.
Springer, 1992.

[6] G. Tesauro. Temporal difference learning and
td-gammon. Communications of the ACM, 38(3):58–68,
1995.

[7] M. Van Der Ree and M. Wiering. Reinforcement
learning in the game of othello: learning against a fixed
opponent and learning from self-play. In 2013 IEEE
Symposium on Adaptive Dynamic Programming And
Reinforcement Learning (ADPRL), pages 108–115.
IEEE, 2013.

